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GRAPHICAL MODELS AND
COMPUTERIZED ADAPTWE TESTING

Robert J. Mislevy and Russell G. Almond
CRESST/Educational Testing Service

Abstract

This paper synthesizes ideas from the fields of graphical modeling and educational
testing, particularly item response theory (IRT) applied to computerized adaptive
testing (CAT). Graphical modeling can offer IRT a language for describing
multifaceted skills and knowledge, and disentangling evidence from complex
performances. IRT-CAT can offer graphical modelers several ways of treating sources
of variability other than including more variables in the model. In particular,
variables can enter into the modeling process at several levels: (a) in validity studies
(but not in the ordinarily used model); (b) in task construction (in particular, in
defining link parameters); (c) in test or model assembly (blocking and randomization
constraints in selecting tasks or other model pieces); (d) in response characterization
(i.e., as part of task models which characterize a response); or (e) in the main
(student) model. The Graduate Record Examination (GRE) is used to illustrate ideas
in the context of IRT-CAT, and extensions are discussed in the context of language
proficiency testing.

1.0 Introduction

Computerized adaptive testing (CAT; Wainer et al., 1990) is one of the most
significant practical advances in educational testing in the past two decades.
Using the information in their unfolding patterns of responses to adaptively select
items for examinees, CAT can improve motivation, cut testing time, and require
fewer items per examinee, all without sacrificing the accuracy of measurement.
The inferential underpinning of modern CAT is item response theory (IRT;
Hambleton, 1989). Successful large-scale applications of IRT-CAT include the
Graduate Record Examination (GRE) and the National Council Licensure
Examination (NCLEX) for assessing nurses.

1
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As useful as IRT-CAT has been, two constraints have blocked its extension

to wider varieties of applications. These constraints are the limited scope of tasks

that can be used without seriously violating IRT's conditional independence

assumptions, and IRT's limited capabilities to deal jointly with multiple, interact-

ing aspects of knowledge or skill. Graphical models (GMs; Almond, 1995,
Lauritzen, 1996; they are often called Bayesian Inference Networks, or BINs,

when used predictively; Pearl, 1988) provide a language for describing complex

multivariate dependencies. A graphical modeling perspective extends the IRT-

CAT inferential framework to accommodate richer tasks and more complex

student models.

Despite the simplistic nature and strong independence assumptions of the

IRT-CAT model, its users have developed sophisticated techniques to ensure its

success in practical applications. Many variables seemingly ignored by the IRT
model actually enter into the task creation and test assembly processesoften
informally. These techniques could be adapted to other applications of graphical

modeling as well, as graphical modelers move away from the idea of an all-
encompassing model and toward collections of model fragments, which can be
assembled on the fly to meet specific task demands (knowledge-based model

construction; Breese, Goldman, & Wellman, 1994).

This paper synthesizes a number of ideas from graphical modeling and

educational testing. To this end, Section 2 reviews the basic ideas of IRT and CAT,

and Section 3 casts them as a special case of probability-based inference with

graphical models. We then see that the simplicity of IRT as a GM is deceiving.

Section 4 describes how many variables are handled informally or implicitly play

crucial roles in practical applications of IRT-CAT, even though they do not appear

in the IRT model. We sketch more complex GMs to reveal the significance of some

of these hidden extra-measurement considerations. Section 5 outlines graphical-

model-based assessment, adaptive if desired, with models that explicitly

incorporate such considerations in order to handle more complex tasks or student
models. Section 6 sketches two ways this approach might be employed in
language proficiency assessments that employ complex, integrative tasks. (For

an illustration of their use in a fielded application, see Mislevy & Gitomer, 1996,

and Steinberg & Gitomer, 1996, on HYDRIVE, an intelligent tutoring system for
learning to troubleshoot aircraft hydraulics systems.) Section 7 lists some
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technical issues that must be explored in developing graphical-model-based

assessment.

2.0 Item Response Theory and Computerized Adaptive Testing

An IRT model expresses an examinee's propensity to make correct responses

or receive high ratings on a collection of test items in terms of an unobservable

proficiency variable 0 . The responses are posited to be independent, conditional on

0 and parameters that express characteristics of the items such as their
difficulty or sensitivity to proficiency. A simple example is the Rasch model for n

dichotomous test items:

j=1
(1)

where x is the response to Item j (1 for right, 0 for wrong), f3, is the "difficulty

parameter" of Item j, and P(x I e,p,). expk(0 13,)]/[1+ exp( pi)]. For selecting

items and scoring examinees in typical applications, point estimates of the item

parameters (P...,13 ), or B for short, are obtained from large samples of examinee

responses and treated as known. Section 4.2 below will discuss modeling

alternative sources of information, and remaining uncertainty, about B.

Once a response vector x = (x1,...,x) is observed, (1) is interpreted as a

likelihood function for e, say L(0Ix,B). The MLE Ô maximizes L(Olx,B), its

asymptotic variance can be approximated by the reciprocal of the Fisher
information function, or the expectation of second derivative of - L(0Ix,B),

evaluated at Ô. Bayesian inference is based on the posterior distribution
p(Oix,B) o L(01x,B)p(0), which can be summarized in terms of the posterior mean

and the posterior variance Var(0(x,B).

Fixed test forms have differing accuracy for different values of e, with
greater precision when e lies in the neighborhood of the items' difficulties. CAT

provides the opportunity to adjust the level of difficulty to each examinee. Testing

proceeds sequentially, with each successive item k+1 selected to be informative

about the examinee's 0 in light of the responses to the first k items, or x(k)

(Wainer et al., 1990, chapter 5). One common approach evaluates o after each

response, then selects the next item from the pool that provides a large value of



Fisher information in the neighborhood of 0. A Bayesian approach determines the

next item as the one that minimizes expected posterior variance, or

E [Var(01x(k) , x ,B(" ,Pikc(k''B")] (Owen, 1975). Additional constraints on item
selection, such as item content and format, are addressed below in Section 4.3.

Testing ends when a desired measurement accuracy has been attained or a
predetermined number of items has been presented.

3.0 IRT Computerized Adaptive Testing as a Graphical Model

Probability-based inference in complex networks of interdependent variables

is an active topic in statistical research, spurred by such diverse applications as
forecasting, pedigree analysis, troubleshooting, and medical diagnosis. The
structure of the relationships among the variables can be depicted in an acyclic

directed graph (commonly called a DAG), in which nodes represent variables and
edges represent conditional dependence relationships. Corresponding to the DAG is

a recursive representation of the joint distribution of the variables of interest,

generically denoted {Z, , . , Z,}:

m

,) = 11 p(Z jl{" parents" of Zi}), (2)
J=1

where the I" parents" of is the subset of { upon which Z., is directly

dependent. In educational applications, for example, we posit unobservable
variables that characterize aspects of students' knowledge and skill as parents of
observable variables that characterize what they say and do in assessment
situations. Spiegelhalter, David, Lauritzen, & Cowell (1993) review recent
statistical developments in graphical modeling.

Figure 1 shows the DAG that corresponds to IRT. The generic Z variables

specialize to e and the item responses { , X . The first panel suppresses the
dependence on item parameters, while the second makes the dependence explicit
by indicating that the conditional probability distribution of each X1 given 0 is a

function of p, . Such a structure, which posits conditional independence of item

responses given a single unobserved variable, is often called a "naive Bayes"
model since it rarely captures the subtle relationships found in real-world

9
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Figure 1. DAGs for an IRT model. Item parameters that determine conditional
distributions of Xs given 0 are implicit in the left panel and explicit in the
right panel.

problems (Spiegelhalter & Knill-Jones, 1984). This depreciative term is

undeserved in thoughtful implementations of IRT-CAT, however, because many

variables that do not appear in the simple model have been handled behind the

scenes, expressly to ensure that its simple structure will suffice for the task at

hand.

One way to describe IRT-CAT from the perspective of graphical models is

through the DAG with 0 as the single parent of all items in the test pool, as in

Figure 1. At the beginning of testing, the marginal distribution of the 0 node is

p(9). Each item is checked to find one that minimizes expected posterior variance;

it is administered, and the process repeats after the response, now starting from

p(01x(')). The process continues with each successive p(0Ix(k)) until testing is
terminated. At each step, the observed value of the administered variable is fixed,

the distribution of 0 is updated, and expectations for items as-yet-unadministered

are revised for calculating the expected posterior variance of 0 if each of the items

were presented next.

A second way to describe IRT-CAT is statistically equivalent, but highlights

the modularity of reasoning that can be achieved with graphical models. Figure 2

depicts the situation in terms of graphical model fragments: the student-model

variable 9 and a library of nodes corresponding to test items, any of which can be

"docked" with the 9 node to produce a dyadic DAG as shown in the right-hand

panel of the figure. This small DAG is temporarily assembled to absorb evidence

about 0 from the response to a given Item j. It is disassembled after the response

is observed and the distribution of 0 updated accordingly. The new status of
knowledge about 0 either guides a search of the item library for the next item to



Student
model
variable Task Library

Item 2 "docked" with e

Figure 2. CAT as knowledge-based model construction. Left panel shows
0 node and task-node library. Right panel shows Item 2 "docked" with
e to create a dyadic DAG.

administer or provides the grounds to terminate testing. This process is an
example of knowledge-based model construction (Breese et al., 1994).

4.0 Roles of Variables in IRT-CAT

A first glance at the IRT models used in current tests such as the GRE's
Verbal, Quantitative, and Analytic subtests or the Test of English as a Foreign
Language (TOEFL) measures of Reading, Listening, and Structure gives the
misleading impression that everything that is happening can be understood in
terms of simple, one-variable student modelsthe overall proficiencies in each
scoring areaand corresponding task pools. But many more variables are being
managed behind the scenes, some to effectively define the variable being
measured, others to ensure that the simple analytic model will adequately
characterize the information being gathered.

Every real-world problem has its own unique mix of features and demands,
and every person has a unique approach to its demands. This is true in particular
of assessment tasks, and accordingly, examinees will vary in their degree of
success with each of them. Educational and psychological measurement, as it has
evolved over the past century, defines domains of tasks so that differences among
examinees with respect to some features tend to accumulate over tasks, while
differences with respect to other features don't tend to accumulate (Green, 1978).
The variance that accumulates becomes "what the test measures," or the

41
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operationally defined "construct." Other sources of variance constitute

uncertainty about an examinee's standing on that construct.

What practices have evolved to guide testing practice under this perspective?

This section discusses roles that variables serve to this end in IRT-CAT.

1. Variables can limit the scope of the assessment, and never appear in the
analytic model.

2. Variables can describe task features, for constructing tasks and modeling
item parameters.

3. Variables can control test assembly.

4. Variables can characterize responses (observables).

5. Variables can characterize aspects of proficiency (collectively, the
student model).

A given variable can play different roles in different tests, according to the

purposes and operational definitions of those tests. Only variables playing the last

role in the list appear explicitly in the measurement modelin the case of IRT-
CAT, 0. e is usefully thought of as a summary of evidence about a construct
brought about through choices about, and manipulation of, many other "hidden"

variables through the first four roles listed above.

4.1 Variables That Limit the Scope of the Assessment

This section shows how two kinds of studies usually thought of as validity

analyses help ensure that the simple structure of IRT is adequate. In both cases,

variables that might generate interactions among item responses beyond those

accounted for by an overall proficiency variable are the focus of the study, and

actions are taken so that these variables need not be included in the analytic

model. Results in the first case lead one to constrain testing contexts and
methods, so that the operationally defined 0 effectively conditions on specified

values of these variables. Results in the second case can lead one to eliminate

items that would engender strong interactions with unmodeled student

characteristics, so that one can effectively marginalize over those characteristics.

Delimiting the domain and the testing methods. Myriad aspects of

examinees' skills, knowledge, and experience affect their performance in any
learning domain, not all of which can be, nor should be, encompassed in any

12



particular test. We must consider which aspects of the universe of potential
assessment tasks are salient to the job at hand and determine which of them to
address in the test and which to exclude. In a test of academic language
proficiency, for example, do we want to include scenarios that span all of college
life in a test of English proficiency, from doing the laundry to interacting with
campus police, or shall we limit attention to academic and classroom interactions?
Should we assess listening skills with closed-form items based on taped segments,
or with tasks that combine listening with speaking in a conversation with a
human examiner? The way we elicit performance in language tests has a
significant effect on performance; some examinees are relatively better at one
kind of task than another, perform better in some settings than others, or are
more familiar with some contexts than others. There will thus tend to be stronger
associations among some tasks than others related to testing contexts and
methodsinteractions that invalidate the structure of the DAG in Figure 1. If we
want to use IRT models, studying sources of variability in tasks (e.g., Bachman,
Lynch, & Mason, 1995) helps us determine when we can ignore such interactions,
and when they are so large we should consider scaling within more homogeneous
subsets of tasks.

Differential item functioning (DIF). DIF occurs when, for reasons
unrelated to the skills and knowledge of interest, certain task content or format
features tend to be relatively harder for members of identifiable subpopulations,
as defined for example by gender or ethnic background. Reading comprehension
questions about baseball might be more difficult for girls than boys, who would
perform similarly on items with the same language and use characteristics, but
about other topics. The DAG in Figure 3 depicts this unwelcome situation. DIF

Figure 3. A DAG illustrating Differential Item Functioning
(DIF). Response probabilities of Items 2-n are conditionally
independent of sex given e. Response probabilities for Item 1
are dependent on sex as well as e.

81.3
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analyses explore pretest data for its presence. Some potential causes of DIF can
be avoided by defining variables that identify problematic features of tasks, and
excluding any tasks that have these features from the domain. (In contrast, an
instructional application might purposely seek out items for which personal
interest is very high for certain students, in order to better motivate them to
engage the underlying concepts.)

4.2 Variables That Describe Task Features

Individual tasks in a test can be described in terms of many variables. They

concern such things as format, content, modality, situation, purpose, vocabulary

load, grammatical structure, mathematical knowledge required, cognitive

processing demands, and so on. Some of these variables appear formally in test
specifications, but test developers employ far more when they create the tasks.
Without formally naming or coding this information in terms of variables, writers
of tasks draw upon such sources as past results with similar items, experience

with how students learn the concepts, awareness of common misconceptions, and

cognitive research about learning and problem solving in the domain. Studies have

shown that these kinds of variables can be strong predictors of item difficulty (see,

for example, Freedle & Kostin, 1993, on TOEFL listening comprehension tasks,
and Chalifour & Powers, 1989, on GRE analytical reasoning tasks).

One way to use this collateral information about tasks is to supplement,
perhaps supplant, data from pretest examinee samples as the source of

information about the IRT item parameters B (Mislevy, Sheehan, & Wingersky,
1993). In effect, one creates a second-order DAG for modeling item parameters
(Figure 4).

Figure 4. A portion of a two-level DAG, which posits a model for the
item parameter p that in turn gives the conditional probabilities of
the response to Item 2 given q. Y21-1723 are coded features of Item 2.



A second way to use the normally hidden variables that characterize test
items is to erect a more principled framework for item construction. Such

variables would be the basis of "item schemas" or "item shells," for developing
families of tasks with characteristics and properties that are both fairly well

understood and demonstrably grounded in a theoretical framework of the
knowledge and skills the test is meant to elicit. Features of schemas and features

of the elements that fill in schemas could then be used to model IRT parameters,

as discussed above. The intimate connection between task construction and
difficulty from a cognitive point of view is illustrated in Bejar (1990). See Hively,
Patterson, and Page (1968) for a-proposal along these lines before the days of IRT,

and Embretson (1993) for a more recent investigation using contemporary
cognitive and measurement theory.

A third way to use variables that characterize task requirements is to link
values of student-model variables to expected observable behaviors. With the
Rasch model, for example, knowing 0, allows us to calculate the probability of a
correct response from a student with any given 0. Conversely, we can give

meaning to a value of 0 by describing the kinds of items a student at that level is
likely to succeed with, and those he is not. To the extent that item features
account for P s, then, we can describe the student's proficiency in terms of task
characteristics and/or cognitively relevant skills (see Sheehan & Mislevy, 1990,
for an example with document literacy tasks, and McNamara, 1996, chapter 7,
for an example concerning Chinese language reading proficiency).

4.3 Variables That Control Test Assembly

Once a domain of items has been determined, test specifications constrain
the mix of items that constitute a given examinee's test. We observe neither the
whole of' the task domain nor an uncontrolled sample, but a composite carefully
assembled under prespecified rules for "blocking" and "overlap."

Blocking constraints ensure that even though different examinees are
administered different items, generally of different difficulties in a CAT, they
nevertheless get similar mixes of content, format, modalities, skill demands, and
so on. Stocking and Swanson (1993) list 41 constraints used in a prototype for the

GRE CAT, including, for example, the constraint that one or two

aesthetic/philosophical topics be included in the Antonym subsection. Since it is

10 1



not generally possible to satisfy all constraints simultaneously, these authors
employed integer programming methods to optimize item selection, with item-

variable blocking constraints in addition to IRT-based information-maximizing

constraints.

Overlap constraints concern the innumerable idiosyncratic features of items

that cannot be exhaustively coded and catalogued. Sets of items are specified that

must not appear in the same test because they share incidental features, give
away answers to each other, or test the same concept. Overlap constraints
evolved through substantive rather than statistical lines, from the intuition that
overlapping items reduce information about examinees. The graphical modeling

formalism allows us to explicate why, how, and how much is lost. Each item is
acceptable in its own right, but their joint appearance would introduce an
unacceptably strong conditional dependence"double counting" evidence (Schum,

1994, p. 129) under the simple conditional independence model.

Figure 5 illustrates the impact of test assembly constraints with a simple

example. The item pool has just four items; Items 1 and 2 both use the unfamiliar

word "ubiquitous," and Items 3 and 4 both concern right triangles. Overlap

constraints would say a given examinee's test should not contain both Items 1 and

2, and not both Items 3 and 4. A blocking constraint would say that one item from

each pair should appear in each examinee's test. The first and second panels in
Figure 5 are alternative DAGs for the entire pool, one showing conditional

dependencies among overlap sets and the other introducing additional student-

model variables. The third panel is the standard IRT-CAT DAG with overlap and

Figure 5. Three DAGs related to overlap and blocking constraints. The first panel shows
conditional dependencies among item sets. The second shows conditional independence
achieved by adding student-model variables. The third shows conditional independence
achieved within the IRT model by constraining what can be observed.



blocking constraints in placeits simplicity is appropriate only because the inflow

of evidence has been restricted so as to avoid some particularly egregious

violations of its strong conditional independence structure.

Many other variables could be defined to characterize test items according to

features not controlled by blocking or overlap constraints. These include the item-

level variables discussed in Section 4.2 that can be used to model item

parameters, as well as the many incidental and idiosyncratic features that make
each item unique. These variables are dealt with by randomization; the particular
values they take in any given examinee's test are a random sample from the pool,

subject to blocking, overlap, and.measurement constraints. The GRE Verbal CAT,

for example, may require that each examinee receive one passage on a topic in

science and another in literature. There are many topics within both areas, and
one may be selected from each area in accordance with other constraints but
ignoring the specific identification of topics within areas. Whether an examinee
happens to be familiar or unfamiliar with a given topic undeniably affects her
performance, but this interaction is not modeled; having randomized, the examiner
leans on large sample theory to average over these effects.

4.4 Variables That Characterize Responses (Observables)

Characterizing student responses is straightforward with multiple-choice
items in IRT-CAT: Did the student indicate the option prespecified to be correct, or

a different one? Open-ended responses can also be analyzed with dichotomous IRT

models, but more judgment is required to distill "correctness" from unique
performances. In these latter cases, variables can be defined to describe qualities
of the products or performances students produce, and rules can be devised for

mapping values of these variables into the correct/incorrect dichotomy.

More generally, salient characteristics of examinee responses can be coded in

terms of fully or partially ordered rating categories. For example, Bachman and

Palmer (1996, p. 214) offer a variable for coding "knowledge of syntax" as
displayed in specific tasks by means of a five-point rating scale. The fourth point,
"evidence of extensive knowledge of syntax," is marked by a large range with few

limitations, and good accuracy with few errors. IRT models have been extended
beyond dichotomous data to deal with these ordered response categories (see
Thissen & Steinberg, 1986, for a taxonomy of models). In this case, Xi is



multinomial, and item parameters give the probabilities of response in the
possible categories conditional on e. Dodd, De Ayala, and Koch (1995) describe

IRT-CAT with such models. As with dichotomous models, the value of X, may

either be immediate because of restrictions on possible response behavior, or it

may require a further step of evaluation in terms of abstracted properties of less

constrained response behaviors. When nontrivial differences may occur among
qualified observers, IRT models that include effects for raters and diagnostic

information for monitoring their work can be employed (e.g., Linacre, 1989; see

McNamara, 1996, on the use of these models in language proficiency

assessment).

4.5 Variables That Characterize Aspects of Proficiency

(the Student Model)

Student-model variables integrate information across distinct pieces of

evidence to support inference about examinees' skills and knowledge at a higher

level of abstraction than the particulars of any of the specific tasksa level
consonant for instruction, documentation, or decision making, as the application

demands. The nature of student-model variables should be driven by the purpose

of the test, but also be consistent with empirical response patterns and theories of

performance in the domain. As further discussed in the following sections, it is

neither possible nor desirable to include in the model variables for all conceivable

aspects of proficiency. The choice is determined by utilitarian purposes, such as

distinctions that will be important for reporting or decision making, as opposed to

complete psychological and sociological explication of responses.

For example, the current TOEFL has three student-model variables
listening, reading, and grammatical structure, or L, R, and Sand each is
evidenced by discrete tasks of its type only, with disjoint item domains and

associated domain proficiency variables eL, OR, and Os, each as depicted in

Figure 1. These variables are used for infrequent but consequential decisions such

as admitting non-native English speakers into undergraduate and graduate
academic programs. In contrast, an intelligent tutoring system (ITS) must define

student-model variables at a finer grain-size in order to provide instruction

frequently and specifically. The guiding principle for ITSs is that student models



should be specified at the level at which instructional decisions are made (Ohlsson,

1987).

Standard IRT-CAT is based on univariate student models. Multivariate
student models become important when observations contain information about
more than one aspect of proficiency, for which it is desirable to accumulate
evidence. Segall (1996) describes CAT with multivariate normal student-model
variables and logit-linear models linking their values to the probability of item
responses. Sections 5 and 6 discuss multidimensional student models further, with

some examples motivated by the TOEFL program's TOEFL 2000 project.

5.0 Graphical-Model-Based Computerized Adaptive Testing

(GM-CAT)

Experts differ from novices, not merely by commanding more facts and
concepts, but also by forging and exploiting richer interconnections among them
(e.g., Chi, Feltovich, & Glaser, 1981). Direct assessment of increasing expertise,
therefore, requires (a) complex tasks, in order to elicit evidence that draws upon
multiple and interrelated aspects of skill and knowledge, and (b) multivariate
student models, in order to capture, integrate, and accumulate the import of
students' performances across such tasks. The fact that standard IRT is not up
to the task does not require abandoning its underlying inferential principles, but
rather extending them. We can build on the same ideas of defining unobservable
variables to "explain" patterns of observable responses, and "some sources of
variation accumulating and others not"and of using probability-based inference
to manage accumulating knowledge and remaining uncertainty about student
proficiency as assessment proceeds. This section sketches out an approach in
general terms, noting how it addresses issues discussed above in the context of
IRT-CAT. The following section illustrates the ideas with two examples from
language proficiency assessment. Mislevy and Gitomer (1996) and Steinberg and
Gitomer (1996) describe a simplified application of the approach in a fielded
system, the =RIVE intelligent tutoring system for troubleshooting aircraft
hydraulics systems.

Figure 6 illustrates one possible implementation of a GM-CAT. It is

presented here to provide a visual reference for the discussion of the
mathematical properties. Section 6.2 presents the language-testing motivation

14
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Student Model Task Model Library

Figure 6. A "task-oriented" DAG. Information about examinee performance is
accumulated in variables associated with the four traditional "skills." Conditional
probabilities of task responses are modeled in terms of cognitively-relevant task
features (not depicted). Items 1 and 2 are conditionally independent, and each depends
on only a single student-model variable. Item 3, a small "integrated" task, has two
skill parents. Items 4, 5, and 6 are multiple aspects of response to a single complex
task; each has multiple skills as parents, and conditional dependencies among items
are further indicated to deal with context effects.

for this example, and Section 6.3 discusses an alternative approach. (It may be

noted that some of the variablesin particular, eR, ow, es, and 0,seem
evocative of the concepts Reading, Writing, Speaking, and Listening. Whatever
meaning was intended by placing those variables in the model, their operational

meaning is an average over performance on tasks related to those modalities.

Thus the true meaning of the variables in the model is controlled by variables that
do not appear at all in Figure 6: that is, variables controlling the scope of the exam

[Section 4.1] and the selection of tasks [Section 4.3].)

The model in the GM-CAT framework is spread among two sources. To the
left is the student model, which is fixed across all administrations of the exams. To

the right is a collection of task/evidence models, or DAG fragments, corresponding

to a pool of tasks. A given examinee will see a subset of the tasks according to a
task selection algorithm, which balances value of information considerations with

content and overlap constraints. When an examinee is assigned a task, the
evidence model associated with that task is attached to the student model



(according to the pattern of stub variables in the evidence model). The evidence
from the examinee's response to that task is then absorbed into the main student
model, and the task/evidence model can be detached, leaving the updated student
model ready for the next task. Thus, the GM-CAT framework is another
application of knowledge-based model construction (Breese et al., 1994).

The nodes in the student model are unobservable variables related to
examinee proficiencya multivariate generalization of the role of IRT 9. The
student-model variables represent aspects of skill and knowledge and are included
in the model either because they will be used to report students' performance, to
accumulate supplementary patterns across task situations for diagnostic
feedback, or to account for incidental dependencies across tasks. Their nature and
number should be consistent with, but are not uniquely determined by, an
understanding of performance in the domain. The final determination of the
number and granularity of variables belonging in the student model is governed by

the requirements for reporting and diagnosis in the examination. Thus a pass/fail
licensure exam will use a much coarser student model than an intelligent tutoring

system.

The nodes in the task evidence models are observable variables that
correspond to salient aspects of examinees' behaviors in specified task
situationsa generalization of the IRT item responses. Generally, these will
correspond to features of a task response. They could be as simple as "did the
examinee give the correct response to a multiple-choice question" or as complex as
dimensions of a multi-attribute rating produced by a human judge or by running a

parser on a transcript of examinee actions in a simulator.

There are three kinds of associations among the student-model and
observable nodes.

The first kind of association is the most important: Student-model variables
are parents of observables. In this way, skills and knowledge "explain" patterns in
observable behavior in the tasks at hand, and when responses are observed, belief
about student-model variables is updated. The associations take the form of
conditional probabilities of values of the observable variables, given the values of
student-model variablesa generalization of IRT item parameters. When
multiple aspects of skill and knowledge are posited as parents of a given
observable, relationships such as conjunction, disjunction, and compensation may

16



be proposed. Task designers indicate the structure of these associations (indicated

by item stubs in Figure 6) and provide initial estimates of the conditional
probabilities based on task-feature variables, response-feature variables, and

expectations of the latter given the former at various levels of the student-model

variables. These conditional probabilities may be further modeled as functions of

task-characteristic variables, as a generalization of the IRT technique depicted in

Figure 4.

A second kind of association is that among observables, over and above the

associations induced by student-model variables. These occur when multiple

aspects of a performance in the same task situation are captured as observables,
and including them in the DAG is a way to model the effects of shared contexts,

similarities in response methods, or incidental connections that overlap

constraints would disallow in IRT-CAT. A task/evidence model for a complex task

would comprise multiple observables, perhaps with associations engendered by

the commonalities induced by shared context, but probably with different student-

model parents according to their particular demands. These associations are
illustrated in Figure 6 by the arrows connecting observables X4, X5, and X6.

A third kind of association is that among various student-model variables:

that is, some student-model variables may appear as parents of other student-
model variables in order to express such relationships as prerequisition, empirical

correlation, or logical relationships such as conjunction and disjunction. These

associations appear in Figure 6 as arrows connecting student-model variables to

one another. In this way, direct evidence about one student-model variable can
provide indirect evidence about another, thereby exploiting associations among

skills or competences to improve the accuracy of reports.

Adaptive testing with a graphical model would use the current state of the

student model as part of the item selection algorithm. Just as in the IRT-CAT, the

GM-CAT selects tasks from a task pool to maximize some information metric.

Value of information (Heckerman, Horvitz, & Middleton, 1993) and weight of
evidence (Madigan & Almond, 1996) seem promising candidates. The GM-CAT

attaches the task/evidence model to the student model and absorbs the evidence

provided by the examinee's responses. The algorithm can then discard the task
item, or maintain it in the model if it is needed to deal with dependence effects

between tasks (i.e., overlap considerations addressed by modeling, as opposed to

avoidance). The algorithm will still need to balance tasks' contexts, content, task



types, and so on within examinees, since these specifications operationally define

the student-model variables in the same sense that item pools and test assembly

rules define q in IRT.

The status of the student model is also used for reporting, or, in interactive

applications, triggering feedback. If a single-number summary of performance is

desired, one can project the current state of the student model onto a particular

dimension such as expected performance on a market basket of typical tasks.
Validity studies increase in importance, because validity internal to the model
must now be monitored as well as relationships to variables outside the model.

6.0 Examples From Language Proficiency Assessment

This section illustrates the ideas of graphical-model-based assessment in the

context of language proficiency testing. The TOEFL 2000 project and key
language testing issues are introduced, then two approaches to modeling complex

tasks are described.

6.1 Background

The current TOEFL described above is widely considered to be a discrete-

point test built on the structuralist behaviorist model of language learning and

testing. Both users and the language learning and testing communities have called

for a new TOEFL test that more closely targets language use in the academic
environment, as opposed to knowledge of vocabulary and surface linguistic
features. The TOEFL 2000 project was thus initiated, with the goal of measuring

communicative English-language competence that focuses on situations and
tasks that reflect university life in North America. It is anticipated that the
resulting assessment will (a) incorporate speaking and writing; (b) include more

performance-based tasks; (c) include tasks that are integrated across modalities,

such as writing based on listening to a conversation or speaking in response to a

reading passage; and (d) provide reports that go beyond norm-referenced scores

(Carol Taylor, personal communication, January 1997).

These aims reflect Hymes' (1972) "communicative competence" perspective.

"[U]nlike the Chomskyan notion of linguistic competence, which is a property of

the mind, communicative competence is a product of the psychological and social

characteristics of situations on which language is used for communication"

(Waters, 1996, p. 54). From this point of view, assessing communicative language
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proficiency requires both an analysis of the targeted language use situations and

the kinds of knowledge that are needed to use language in those situations.
McNamara (1996, chapter 3) provides an integrative review of recent models of

communicative language proficiency, including Bachman's (1990) model

comprising the components summarized in Figure 7.

TOEFL 2000 has made progress on several fronts. Integrative reviews, field

surveys, and empirical research have addressed the issues of relevant situations
and language uses (e.g., Hudson, 1996; Waters, 1996), and linguistic, cognitive,

and sociolinguistic features that influence language use task difficulty (e.g.,

Freed le & Kostin, 1993; Nissan, DeVicenzi, & Tang, 1996). The "Committee of
Examiners Model" (Chapelle, Grabe, & Berns, in press) lays out considerations for

task contexts, situations, and performances; it relates these task features to the
processing required to negotiate them successfully; and it draws implications for

task development and test validation. TOEFL test developers have created
prototypes of integrated tasks that exhibit the integration of modalities and the
context-embedding features that are called for (e.g., the "dinosaur task" mentioned

below). And, as of this writing, a draft of a TOEFL 2000 test framework is
circulating for comment and review. The framework takes steps to further specify
the aspects of situations, materials, and uses of tasks that would constitute the
assessment (Table 1) and begins to model relationships between these aspects
and examinee performance. In sum, a number of relevant variables have been
identified, which can be considered for various of the roles discussed above in

Sections 4.1-4.4.

LANGUAGE COMPETENCE

Organizational Competence

Grammatical Textual
Competence Competence

Vocab Morph. Syntax Phon./ Cohesion Rhetorical
Graph. Organ.

Pragmatic Competence

Illocutionary
Competence

Sociolinguistic
Competence

Ideational Manip. Hueristic Imag. Sens. to Sens. to Sens. to Sens. to
Functs. Functs. Functs. Functs Dial. or Register Natural- Refs &

Variety ness Figs of
Speech

Figure 7. A schematic summary of Bachman's (1990) model. The components of
"organizational competence," the foci of language tests with a structural perspective, are
viewed as enabling skills that must be integrated with an understanding of situation and
purpose for successful communication. The components of these latter capabilities are
subsumed under "pragmatic competence."
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Table 1

Further Breakdown of Aspects of Language Use Tasks

Situation
Characteristics of

input material Types of questions

Setting Grammatical features Different types of questions

Participants and their roles Pragmatic features Type of information requested

Register Discourse features Type of match

Purpose Text structure properties Additional processing conditions

Content Documents Plausibility of distractorsa

Prose

Interactions

a In constructed responses and open-ended tasks, this term refers to the fineness of
distinctions that must be made in order to negotiate the task successfully.

Less progress has been made in specifying a set of student-model variables
(Section 4.5) and delineating evidentiary relationships between them and task
performances. This charge has proved difficult for several reasons. There are vast
numbers of plausible candidates for student-model variables. Richards (1983), for
example, lists 33 "micro-skills" required for just for conversational listening and 18
for academic listening. Different authorities, writing from different theoretical
perspectives or having different purposes in mind, offer proposals that are in some
cases overlapping, in other cases orthogonal, and in still others, contradictory. It is
generally acknowledged that skills and knowledge, however defined, always
interact in use. Student-model variables cannot be decided upon in isolation, but
are roles co-defined with all the other roles discussed above in light of the intended

use of the assessment. Any descriptor of tasks, for example, can induce a student-
model variable if multiple observations are made that share a feature while
differing in other aspects.

This presentation is not intended to offer a definitive resolution to TOEFL
2000's student-model question. Its focus is rather to illustrate the concepts and
tools that are available to carry out principled inference, regardless of which model
is used. While the determination of the student model remains at issue, the kinds
of tasks that are envisaged force us to deal with more complex relationships
among student-model variables and observable task performance variables. The
following sections highlight inferential issues by illustrating how they arise under

20



ID

two rather different perspectives found in the language testing literature, namely,

a task-centered view and a competence-centered view. The former can be viewed

as extension of the inferential approach employed in the current TOEFL, to
accommodate the reconception of language proficiency implied by integrative and

contextualized tasks. The latter departs more radically from current procedures,

incorporating student-model variables motivated by the Bachman model. It goes

without saying that any of these approaches would need to be tested, criticized,

and revised in light of empirical data before operational use.

6.2 Task-Centered Student Modeling

One approach to accumulating and reporting examinees' proficiencies in a
TOEFL 2000 test would be to retain skill-based scores, but now for Reading,

Writing, Speaking, and Listening (R, W, S, and L). There is a long tradition of
reporting language proficiency in these terms, some of which evolved under the
structuralist view of language competence (e.g., the current TOEFL), but some of

which evolved to summarize performance in more authentic proficiency contexts
that implicitly honor the tenets of communicative competence. Bachman and

Palmer (1996, pp. 75 ff.) argue that "it is not useful to think in terms of 'skills,' but

to think in terms of specific activities or tasks in which language is used
purposefully. Thus rather than attempting to defme 'speaking' as an abstract
skill, we believe it is more useful to identify a specific language use task that
involves the activity of speaking, and describe it in terms of its task
characteristics and the areas of language ability it engages." This approach is
taken directly in the following section. This section describes an indirect approach

to the same end: A TOEFL 2000 assessment that reported R, W, S, and L scores

would need to do so in a way that explicates the relationship between those scores
and the behaviors observed (and expected) in specifiable language use situations.

An important step in this direction can be accomplished with tasks that
focus on a modality, as in the document literacy scale of the Survey of Young

Adult Literacy (SYAL; Kirsch & Jungeblut, 1986). After carefully delineating
situations and uses to define a proficiency domain (re Sections 4.1 and 4.3),
cognitively relevant features that characterize tasks were used to describe
expected outcomes of persons on a single proficiency variable (re Sections 4.2, 4.4,
and 4.5). An examinee with an IRT q of 1, foi example, might be expected to

manage unfamiliar tasks that require matching information across two organizing



categories of a document, but have only even odds on tasks with requiring three

matches (Sheehan & Mislevy, 1990; see McNamara, 1996, chapter 7, for further

discussion and examples of exploring the meaning of IRT scales through task

features).

To date, such applications have been limited to collections of tasks that tap a
single student-model variable and are conditionally independent. Extension to the

integrated and contextualized tasks proposed for TOEFL might be carried out in

the manner depicted in Figure 6. Certain features are worth mentioning:

The student model contains the four reporting variables OR, Ow, es, and
eL The relationships among them are empirical associations in the target
population, specific to performance on tasks possessing the
characteristics, and being assembled under the constraints, specified in
the assessment design.

The observables associated with tasks indicate their parents with "stubs"
that represent where student-model and task-model BIN fragments must
be connected when the task is administered.

Some conditionally independent tasks addressing a single modality are
included in the assessment to ground the definition of 0,, Ow, Os, and OL
(e.g., Xi. and X2, associated with Tasks 1 and 2, both depend on OR only).
As with the SYAL (also see Mosenthal & Kirsch, 1991), the conditional
probabilities of response to these items, given their single 0 parent, can
be modeled in terms of selected cognitively-relevant features that
influence difficulty, as in Figure 4 (the higher level DAGs are not shown in
Figure 6 to save space). These features establish an interpretation of the
0 s beyond norm-referenced information. Other asks' features are used to
control task selection, to balance content, situation, context, and other
features of tasks across examinees.

Some observables have multiple Os as parents (e.g., X3, associated with
Task 3, and X4-X6, associated with Task 4). Certain dinosaur items, for
example, have a student read a passage about one theory for the
extinction of dinosaurs, then ask her to write a response with specified
features. Both 0, and Ow are parents of such an item; their relationship is
conjunctive, and values of conditional probabilities depend on both the
reading-demand features and the writing-demand features, as they are
defmed and used for the single 0 items.

Some tasks generate multiple observable variables (e.g., observables X4-
X6, all associated with Task 4). The dinosaur task requires several
responses, with different mixes of parent Os and different values of
variables that drive conditional probabilities, but all share the subject
matter of dinosaurs.
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With only four variables included in the student model, it is clear that many
aspects of examinee skills and knowledge are confounded, and others are
neglected. Some, such as general cognitive skills, grammatical competence, and

aspects of illocutionary and sociolinguistic competence, will influence performance

to some degree in all tasks; they account in part for the associations among Os.
Others, such as motivation and affective response, are confounded with levels of

performance; this model cannot distinguish low motivation or discomfort with the
testing situation, for example, from lack of competence. Still others, such as
examinees' differing profiles of skills and knowledge within the broadly-defined Os

and their felicitous or debilitating interactions with particular contexts and task
methods, will constitute sources of uncertainty about the es so defined.

6.3 Competence-Centered Student Modeling

The approach illustrated in this section could use many of the same task
variables and test assembly rules described in the preceding approach, but would

accumulate evidence in terms of performance in variables motivated by
Bachman's model of communicative competence. We should emphasize that
competence variables could be defined at lower or higher levels of his model, or
derived from a different or competing model. This choice is meant merely to
illustrate inferential issues with some degree of complexity, without becoming

notationally or graphically overwhelming. The diagramming conventions in Figure

8 are the same as those in Figure 6 above. The following points concern differences

with respect to student-model variables:

Student-model variables now appear for Grammatical Competence, Occ;
Sociolinguistic Competence, 0; and Conversational and Correspondence
Competence, and ecRc, inwhich correspond to Discourse Competenceecvc
the Bachman model but distinguish between the forms and skills
associated with Speaking/Listening and Reading/Writing (Bachman &
Palmer, 1996, p. 128, attribute these terms to Widdowson, 1978). These
variables can serve as parents for observable variables that tap different
modalities OGc or Osc allowable for observables associated with any of
the four traditional skills, to the degree they demand these competences,
19,c for observables involving speaking and/or listening, and OCR,. for
observables involving reading and/or writing. Conditional probabilities for
observable variables with these parents will be functions of the degree
and nature of demand on the given competence a task demands, as
implied by task-feature variables again as in Figure 4.
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Figure 8. A "competence-oriented" DAG. Information about examinee
performance is accumulated in variables associated with the four
competences suggested by models of "communicative competence," with
simple "selector" variables associated with skill modalities included to
indicate the degree to which the examinee is able to exhibit those
competences in performances that require functioning within the indicated
modalities. Conditional probabilities of task responses are modeled in
terms of cognitively-relevant task features (not depicted).

Student-model variables also appear for Reading, Writing, Speaking, and
Listening, but their operational definitions depart radically from the
preceding example (the star notation emphasizes the distinction). These
modality variables now serve primarily as "selector" variables, indicating
which modalities are involved in a given observable. In this way they
account for the common observation of examinees' differing profiles of
strength in different modalities, above and beyond the cross-modality
competencies discussed above. An observable would have a given 0* as a
parent if the modality was required in its negotiation. A given examinee's
0* values would indicate the degree to which her cross-modality
competences were either enabled or prohibited when carrying out tasks
requiring that modality. The relationship among these variables and the
competences, for any given observable in which they were parents, would
thus be conjunctive; e.g., a "fuzzy AND" gate.

In this approach, an examinee's performance across the balance of task
types (specified as to characteristics of situation, materials, and use, as per
Section 4.3) would be summarized in terms of cross-modality competencies and a

profile of strengths and limitations associated with the modalities that must be

employed to evidence those competences. For reporting purposes, projections
could be made from these multivariate profiles to "scores" on designated sets of
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tasks of different typesone market basket of tasks related to, say, classroom

interactions, and a different market basket representing interactions that
teaching assistants have with students.

Figure 9 presents a simpler version of the student model, achieved through

graphical-modeling approximation strategies. A "communicative competence"

variable has been incorporated to model associations among the more narrowly
defined cross-modality competences. No observables would have this variable as a

parent, and its function is strictly utilitarian; its values might never be used for

score reports or decision making, as market basket projections would give a better
indication of students' communicative competence as it is currently construed.

The anticipated strong associations between the Correspondence Competence

variable and the Reading and Writing variables, and between Conversational

Competence and Listening and Speaking variables, have been modeled explicitly.

But other associations among the modality variables and the competences have
been dropped, following the rationale in Patz and Mislevy (1995): With this
simplification, one gains computing efficiency and retains consistent estimates of
student-model variables, although trading away some precision in estimation.

7.0 Next Steps

A clear understanding of just what is involved in successful applications of

IRT-CAT is a useful first step toward extending the approach to more complex

settings. Probability-based inference with graphical models offers a framework for

expressing, then confronting, the problems that will arise. Despite preliminary

successes, there are still a large number of issues that must be addressed to
develop a theory of graphical-model-based assessment, with fixed tests as well as

Figure 9. A simplified approximation for the "competence-oriented" DAG.



CAT. We have noted above the importance of the cognitive foundation of an
application. Among the attendant technical challenges we have begun to address

are the following.

Knowledge-Based Model Construction (KBMC). KBMC (Breese et al.,
1994) concerns the dynamic construction and manipulation of graphical models,

adapting to changes in knowledge status but in importance of the questions being
asked; that is, revising models to reflect changing frames of discernment, to use
Shafer's (1976) phrase, as well as changing states of knowledge and changing
external situations. IRT-CAT adapts to changing knowledge states within a static
frame of discernmentthe question is always "What is Orand uses
information formulas and task-based blocking and overlap constraints to select
items. Generalizations of these rules are required for more complex models, in
which different subparts of the model may shift into and out of attention.

Task induced dependencies. A task/evidence model could provide common
descendants of two conditionally independent variables in the student model.
Collapsing over tasks will produce new edges in the student model. The theory of
GM-CAT will require both approximation techniques for determining when these
edges can be observed and techniques for dynamic recompilation of the junction
tree. Jaakkola and Jordon (in press) present a promising approach to this problem
using variational techniques.

Continuous variables in student models. The most common graphical
model with both continuous and discrete variables is the Conditional Gaussian
(CG) model (Lauritzen & Wermuth, 1989). These models all have continuous
(normal) variables conditioned on the discrete variables. In educational testing,
however, it seems more natural to have the discrete item responses conditioned on
the continuous student proficiencies. Perhaps the multivariate IRT of Segall
(1996) (a multivariate extension of the Rasch model) can be pressed into service
here, but the lack of a closed form solution will require numerical solutions that
can fit the dynamic requirements of CAT. The difficulty is that there are no closed
form solutions when continuous variables are parents of discrete items; however,
Jaakkola and Jordon (1997) present a possible approximation technique.

Model fit. More complex student models and task performance variables
increase the analyst's burden in fitting, checking, and improving models. A
particular advantage of using probability-based inference is that standard
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statistical techniques can be brought to bear on many of these questions, as
Spiegelhalter et al. (1993) discuss in connection with the use of Bayes nets in
expert systems more generally. In addition, more specialized diagnostics for
models with unobservable variables can be adapted from the psychometric
literature; see, for example, Stout (1987) on assessing dimensionality in IRT, and

Levine and Rubin (1979) on detecting aberrant response patterns.
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